
Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

74

Two-dimensional tables

15 Two-dimensional tables

In our work with the county data, I said that setting up two arrays, one for the county names and one for
their populations, was not the ideal approach. The trouble is that there is nothing but numerical position in
the respective sequences to tie individual population figures to the correct names. This is risky. Code-
chunk (13), which set the arrays up, will never put a population figure in a wrong cell, differently-
numbered from the cell containing the corresponding name; but, in real-life programming, data sets often
have to be changed and updated after they are initially created, and we have set up a system here where it
would be all too easy for the @countyNames and @countyPops arrays to get out of synch with
one another. It shouldn’t happen – but, with software, if something can go wrong then sooner or later it
probably will.

We are really dealing with a single set of data: on paper it would be one two-dimensional table, with many
rows (one for each county) and two columns. So it ought to be coded as a single array, @counties,
within which an individual county’s name and population will be a single data element. And that is easy to
do.

Until now, array elements have always been scalars – numbers, or strings. But in Perl they can be anything
we like, including arrays.24 What we want to do is to set up a @counties array, within which each row
is a two-element array containing a name and a population figure. Then we have eliminated the risk of
parallel arrays getting out of synch with one another. We will have mapped the two-dimensional shape of
the table on paper into an electronic equivalent.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Perl for Beginners

75

Two-dimensional tables

Within an array of arrays, the value in the j’th column of the i’th row will be identified by two pairs of
square brackets:

$arrofarr[i][j]

So, to create the @counties array, we need to replace lines 16 and 17 of (13) with the following:

$counties[$i][0] = $name;
$counties[$i][1] = $population;

Thus our new version of code-chunk (13) will be:

(18)

1 open(INFILE, "<../data/pops/countyData.txt")
 or die "Cannot open input file\n";
2 $i = 0;
3 while ($a = <INFILE>)
4 {
5 if ($a !~ /\S/) {;}
6 elsif ($a !~ /^\s*(\S.*\S)\s+(\d+)\s*$/)
7 {
8 die "bad input line: $a\n";
9 }
10 else
11 {
12 $name = $1;
13 $population = $2;
14 $name = join("_", split(/\s+/, $name));
15 $population *= 1000;
16 $counties[$i][0] = $name;
17 $counties[$i][1] = $population;
18 ++$i;
19 }
20 }
21 close(INFILE);

Now that we have our two-dimensional table encoded as an array of arrays, we can pick out an individual
scalar data item from it using two pairs of square brackets:

print "$counties[40][0]\n";

Isle_of_Wight

print "$counties[40][1]\n";

97000

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

76

Two-dimensional tables

However, I said in the footnote above that Perl only behaved as if it included arrays of arrays. What we
have actually done with (18) is not exactly what we seem to have done, and you need to be aware of this
so that you don’t get puzzled when other things you might think of doing with arrays of arrays fail to work.

The elements in the rows of @counties are not actually arrays, i.e. sets of data values; they are single
items called references. We can think of a Perl reference as a sort of “pointer”, telling Perl where to find
some other item (in this case, where to find another array).25 In reality, Perl arrays can be only one-
dimensional. But, because array elements can be references to sets of data values, a Perl array can appear
to be multi-dimensional.

One way in which this difference becomes noticeable in practice is that, if you already have an array, you
cannot assign it as a whole to be an element of a larger array. So, for instance, you might have thought that
rather than putting county name and county population separately into separate cells of the two-
dimensional @counties array, we could instead for each county have created a two-element array, and
then assigned that array as a row of @counties. In other words, we might have written the following
instead of 18.16–17:

16 @county = ($name, $population);
17 @counties[$i] = @county; # NO!

That won’t work. Line 16 will create a two-element array @county containing a string and a number;
but line 17 will not make that array the value of an element of @counties. If you are running Perl with
warnings (using perl -w) you will be warned that line 17 ought to begin with $, not @, because any
element of an array must be a scalar; and if you try printing out, say, $counties[4][0], no county
name will emerge.

Provided you stick to building up an array of arrays individual cell by individual cell, though (as we did in
(18), where line 16 put a string into column 0 and line 17 put a number into column 1 for each county),
Perl is organized so that you do not need to worry about the machinery which creates the appearance of an
array whose rows are themselves multi-element arrays. And in this book we shall not worry about it.
References are probably the most important Perl topic which this book deliberately avoids discussing in
detail – the reason being that beginners usually find it a very confusing topic, and we can achieve quite a
lot in Perl without learning about references.

If you progress with Perl, sooner or later you will need to learn about references and “dereferencing”.
These topics are needed for other purposes as well as multi-dimensional arrays. But I said at the beginning
that serious Perl users will need to go on to consult more comprehensive manuals than this brief
beginners’ textbook. Some experts would argue that even beginners need to learn about references. I
believe it will be better to leave them aside, until the reader has grown in confidence working with the Perl
constructions that this book does cover. From now on, then, we shall pretend that Perl does have true
arrays of arrays, but we shall be careful always to put values into arrays of arrays, and get values out, one
individual cell at a time.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

77

Two-dimensional tables

That is a constraint on the arrays-of-arrays concept in Perl. In another respect, though, Perl arrays of
arrays are more flexible than in some other programming languages. Our array @counties, although it
is composed of arrays rather than of scalars (really, “appears to be composed …” – but I shall stop saying
that, and write from now on as if appearance were reality), nevertheless is what one might call “regular”.
The value in each row is always an array containing exactly two elements, one string and one number. In
some languages, multi-dimensional arrays must be regular. But nothing in Perl requires this. It is perfectly
possible to create an array in which rows contain different numbers of elements. (It is even possible to
create an array in which some rows contain individual scalars, other rows contain arrays with different
numbers of elements, and some of those elements could in turn themselves be arrays.)

How often a thoroughly chaotic array like that last one would actually be useful in practice is another
question. Very rarely, I imagine. But mildly irregular arrays often are useful. Although we have
introduced the concept “array of arrays” through an example which is totally regular, bear in mind that
this is just a special case.

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

